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I. Introduction

Abstract
An approach to the spectral estimation for some classes of non-stationary random
signals is developed, that addresses stationary random processes deformed by a
stationarity-breaking transformation. Examples include time warping, amplitude
and frequency modulations, and others. Under suitable smoothness assumptions
on the transformation, approximate expressions are obtained in adapted represen-
tation spaces. In the Gaussian case, this leads to approximate maximum likelihood
estimation algorithms, which are illustrated on synthetic as well as real signals.

II. Model and approximations

Model
We consider the following breaking-stationarity deformation operators:

Amplitude modulation: Aax(t) = a(t)x(t),

Time warping: Dγx(t) =
√
γ′(t)x(γ(t)).

Assume X is a zero mean, Gaussian stationary generalized random process with
spectrum denoted by SX . The observation is of the form

Y = AaDγX .

The wavelet representation allows highlighting the effect of the deformation on
the stationary signal. It is defined as

Wx(s, τ ) = 〈x , ψsτ〉, where ψsτ(t) = q−s/2ψ
(
q−s(t − τ )

)
,

where ψ is an analytic wavelet (i.e. ψ̂(ω) = 0, ∀ω < 0).
Approximation theorem

W̃Y (s, τ ) ≈ WY (s, τ ) = a(τ )WX

(
s + logq(γ′(τ )), γ(τ )

)
The error ε = WY − W̃Y is a zero mean Gaussian random field whose variance
E
{
|ε(s, τ )|2

}
depends on the smoothness of a and γ′, and on the wavelet decay

rate.

III. Estimation procedure and algorithm

Joint spectrum and deformation estimation algorithm
The joint estimation of the deformation operator and the spectrum of the underlying
stationary signal rests on two steps:

Estimation of the deformation assuming the spectrum is known,

Estimation of the spectrum assuming the deformation is known.

⇒ These two steps are computed alternatively until convergence of the estimators.
a) Step 1: Deformation estimation.
Assume that the spectrum of the underlying stationary signal SX is known.
At fixed time τ,, the parameters Θ to estimate are

Θn = (θn,1, θn,2) := (a(τn)2, logq(γ′(τn))).

Denote by wy ,τn the restriction of W̃y(·, τn) to a finite sampling subset of the scale
space. wy ,τn is a zero mean circular, Gaussian random vector. This yields the
following log-likelihood

L(Θn) = − ln |detC(Θn)| − C(Θn)−1wy ,τn ·wy ,τn ,

where

C(Θn)ij = θn,1q
(si+sj)/2

∫ ∞
0

SX(q−θn,2ξ)ψ̂(qsiξ)ψ̂(qsjξ)dξ .

Then, the log-likelihood is maximized with respect to each component of Θn.
b) Step 2: Spectrum estimation.
Assume that the deformation operators θn,1 and θn,2 are known for all n.

Construct the rectified wavelet transform wx ,sk[n] = θn,1
−1/2W̃y(sk−θn,2,τn), then:

E
{

1

Nτ‖ψ‖2
2

‖wx ,sk‖2

}
=

1

‖ψ‖2
2

∫ ∞
0

SX(ξ)qsk
∣∣∣ψ̂ (qskξ)

∣∣∣2 dξ ,
which is a filtered version of SX around frequency ωk = q−skω0 where ω0 is the
central frequency of |ψ̂|2. The considered estimator is obtained by replacing the
expectation by the sample variance of the vector wx ,sk.

Performances: Cramér-Rao lower bound and Slepian-Bangs formula

For any unbiased estimator θ̂n,i (i = 1 or 2) of a component θn,i of the bivariate
parameter Θn,

E
{

(θ̂n,i − θn,i)2
}
≥ CRLB(θn,i).

When the observation is zero mean complex Gaussian

CRLB(θn,i) =

(
Trace

{(
C(Θn)−1∂C(Θn)

∂θn,i

)2
})−1

.

Remark: One can evaluate the robustness to noise performances of the estimators
and show that the θn,2 estimation is robust to additive Gaussian white noise while
the estimation of θn,1 is rather sensitive to additive noise.

In the following numerical examples, the sharp wavelet ψ] (with infinitely many
vanishing moments) is used, defined in the positive Fourier domain by

ψ̂](ω) = ε
δ(ω,ω0)
δ(ω1,ω0) , ω > 0 where δ(a, b) =

1

2

(
a

b
+
b

a

)
− 1 .

Here ω0 is the mode of ψ̂, ω1 is chosen so that ψ̂](ω1) = ε.

Some numerical results
Performances of the algorithm are evaluated on a synthetic toy signal comparing
the results with the true values of the estimated parameters.
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Figure: Joint time warping/spectrum estimation on a synthetic signal. Left: time warping function
estimate (full, blue), ground truth (full, red) and Cramér-Rao bound (dotted, green); Right:
spectrum of the underlying stationary signal.

The algorithm has been tested on real life audio signals. We display here the
example of a singing female voice signal.
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Figure: Scalograms of the original signal and the estimated underlying stationary signal.
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Figure: Estimation of the power spectra of the input signal (left) and the processed signals (right).

As a stationarity check, the harmonic structure of the estimated spectrum is re-
markably neat.

IV. Conclusion and perspectives

Applications
Analysis of non stationary signals to extract spectral properties.

Synthesis of new signals applying any deformation to “stationarized” signals.

Perspectives and further work
Joint estimation of frequency modulation and time warping using an adapted
transform (see [1]).

Estimation of deformations and spectrum for signals where the Gaussian
assumption on the underlying stationary signal does not hold.
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