

DOUBLY NONSTATIONARY BLIND SOURCE SEPARATION

Adrien Meynard

Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

Context:

- Blind source separation problem
- Nonstationary sources
- Time varying mixing matrix

Goal:

- \blacktriangleright Estimate sources from the observations of their linear mixture \Rightarrow BSS
- Estimate deformation functions (time warping) which) characterize the nonstationarity of the sources

JEFAS

Estimate spectra of the underlying stationary sources

I. MODEL

CLASS OF NONSTATIONARY SIGNALS

> x is a realization of a stationary random process X with power spectrum S_X . Acting on x with a time warping operator yields a nonstationary signal y given by: $y(t) = \sqrt{\gamma'(t) x(\gamma(t))}$.

III. RESULTS

The sharp wavelet ψ_{\sharp} (with infinitely many vanishing moments) is used, supported in the positive Fourier domain and defined by

$$\hat{\psi}_{\sharp}(\omega) = \epsilon^{\frac{\delta(\omega,\omega_0)}{\delta(\omega_1,\omega_0)}}, \ \omega > 0 \text{ where } \delta(a,b) = \frac{1}{2}\left(\frac{a}{b} + \frac{b}{a}\right) - 1$$

Here ω_0 is the mode of $\hat{\psi}$, ω_1 is chosen so that $\hat{\psi}_{\sharp}(\omega_1) = \epsilon$.

► Wavelet transform:

$$\mathcal{W}_{\mathsf{x}}(\mathsf{s}, au) = \int_{\mathbb{R}} \mathsf{x}(t) q^{-rac{s}{2}} \overline{\psi}\left(rac{t- au}{q^s}
ight) dt \quad ext{with} \quad q>1 \; .$$

 \Rightarrow The wavelet transforms of the nonstationary signal y and the underlying stationary signal x are approximately related as follows:

 $\mathcal{W}_{\mathsf{v}}(\mathsf{s},\tau) \approx \mathcal{W}_{\mathsf{x}}(\mathsf{s} + \log_q(\gamma'(\tau)),\gamma(\tau))$.

It can be shown [1] that the approximation error is zero-mean and its variance is controlled by the decay properties of the wavelet ψ , and the variations of γ .

JEFAS [2] is an algorithm which relies on the approximation equation for the joint estimation of the time warping function γ' and the spectrum \mathcal{S}_{x} .

NONSTATIONARY INSTANTANEOUS

► Mixture model:

- Sources $\mathbf{y}(t) \in \mathbb{R}^N$: nonstationary independent signals (time warping model).
- Observations $\mathbf{z}(t) \in \mathbb{R}^N$: instantaneous linear mixtures of the sources.

 $\mathbf{z}(t) = \mathbf{A}(t)\mathbf{y}(t)$.

Goal: determine jointly the mixing matrix A(t), the time warping functions $\gamma_i(t)$, and the spectra S_{X_i} of the stationary sources for $i \in \{1, \ldots, N\}$ from the

► *N* = 3

- Both nonstationary sources (time warping model) are Gaussian. Their underlying power spectra are made up of overlapping Hann windows.
- The time-varying mixing matrix coefficients are sinusoidally varying over time:

$$\mathbf{A}(t) = \begin{pmatrix} 1+0.3\cos(5\pi\frac{t}{T}) & 0.75+0.4\cos(3\pi\frac{t}{T}) & 0.6+0.1\cos(2\pi\frac{t}{T}) \\ -0.5+0.5\cos(11\pi\frac{t}{T}) & 1+0.1\cos(8\pi\frac{t}{T}) & 0.8+0.3\cos(5\pi\frac{t}{T}) \\ -0.5+0.2\cos(\pi\frac{t}{T}) & 0.5+0.1\cos(2\pi\frac{t}{T}) & 0.2+0.1\cos(3\pi\frac{t}{T}) \end{pmatrix}$$

 \Rightarrow The wavelet transforms of both sources and observations are displayed below.

observations **z**(t).

Approximation equation:

- Assumption: the mixing matrix coefficients are slowly varying.
- \blacktriangleright \Rightarrow At fixed time τ : approximate linear relation between the wavelet transforms of the sources and the observations:

 $\mathbf{w}_{\mathbf{z}, au}pprox \mathbf{A}(au)\mathbf{w}_{\mathbf{y}, au}$. where $\mathbf{w}_{\mathbf{z},\tau} = \left(\mathbf{w}_{z_1,\tau}^T \cdots \mathbf{w}_{z_N,\tau}^T\right)'$ with $\mathbf{w}_{z_i,\tau} = \mathcal{W}_{z_i}(\mathbf{s},\tau)$. The same notation is used for the wavelet transform of the sources $\mathbf{w}_{\mathbf{v},\tau}$.

II. ESTIMATION PROCEDURE AND ALGORITHM

For each τ , the parameters to estimate are:

- ▶ The unmixing matrix: $\mathbf{B}_{\tau} = \mathbf{A}(\tau)^{-1}$
- ► The time warping parameters: $\theta_{\tau} = (\theta_{1,\tau} \cdots \theta_{N,\tau})^T$ where $\theta_{i,\tau} = \log_q(\gamma'_i(\tau))$

PROBABILISTIC SETTING

 \blacktriangleright Assume the stationary sources X_i are Gaussian. Then, we derive the law of the wavelet transforms of the sources $\mathbf{w}_{\mathbf{y}, au}$ from the approximation equations. And, one can write the approximated likelihood on $\mathbf{w}_{z,\tau}$ given by

 $\ell_{\tau}(\mathsf{B}_{\tau}, \boldsymbol{\theta}_{\tau}) = \log(p_{\mathsf{w}_{z,\tau}|(\mathsf{B}_{\tau}, \boldsymbol{\theta}_{\tau})}(\mathsf{w}_{\mathsf{z},\tau}; \mathsf{B}_{\tau}, \boldsymbol{\theta}_{\tau}))$

JEFAS-BSS converges in 8 iterations. The estimated sources are displayed below, together with the corresponding estimated time warping functions and spectra.

We compare the performances of JEFAS-BSS with reference BSS algorithms adapted to stationary sources (SOBI [3]) or constant mixing matrix (QTF-BSS [4]).

Besides, a regularity prior is given to ${f B}_{ au}$ in order to take into account the smoothness assumption on the mixing matrix.

ty ESTIMATION ALGORITHM: JEFAS-BSS

- ► Initialization: Evaluate $\tilde{\mathbf{B}}_{\tau}^{(0)} \Rightarrow$ Estimate the sources via $\tilde{\mathbf{y}}^{(0)}(\tau) = \tilde{\mathbf{B}}_{\tau}^{(0)} \mathbf{z}(\tau)$.
- The following two steps are computed alternatively until convergence: 1. For each source, estimate parameters $\tilde{\theta}_{i,\tau}^{(k)}$, $\forall \tau$ and spectrum $\tilde{S}_{X_i}^{(k)}$ applying JEFAS to $\tilde{y}_{i}^{(k-1)}$.
- 2. For each τ , solve the MAP problem replacing θ_{τ} with its current estimation:

$$\tilde{\mathbf{B}}_{\tau}^{(k)} = \arg \max_{\mathbf{B}_{\tau}} \ \ell_{\tau}(\mathbf{B}_{\tau}, \tilde{\boldsymbol{\theta}}_{\tau}^{(k)}) \quad \text{s.t.} \quad \|\mathbf{B}_{\tau} - \tilde{\mathbf{B}}_{\tau-\Delta_{\tau}}^{(k)}\|_{\infty} \leq \epsilon_{B}\Delta_{\tau}.$$

 \Rightarrow Estimate the sources via $\tilde{\mathbf{y}}^{(k)}(\tau) = \tilde{\mathbf{B}}_{\tau}^{(k)} \mathbf{z}(\tau)$

Algorithm	SIR (dB)		Amari index (dB)	
	Mean	SD	Mean	SD
SOBI	11.82	3.65	-6.54	0.86
p-SOBI	3.58	1.93	-9.06	0.21
QTF-BSS	0.79	3.88	-3.87	0.42
JEFAS-BSS	30.26	2.37	-15.36	0.70

Table: Comparison of the Signal to Interference Ratio and the averaged Amari index for four BSS algorithms.

REFERENCES

[1] Harold Omer and Bruno Torrésani.

Time-frequency and time-scale analysis of deformed stationary processes, with application to non-stationary sound modeling. Applied and Computational Harmonic Analysis, 43(1):1 – 22, 2017.

- [2] Adrien Meynard and Bruno Torrésani. Spectral Analysis for Nonstationary Audio. IEEE/ACM Transactions on Audio, Speech and Language Processing, 26(12):2371 – 2380, December 2018.
- [3] Adel Belouchrani, Karim Abed-Meraim, Jean-François Cardoso, and Eric Moulines.

A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing, 45(2):434–444, Feb 1997.

[4] Nadège Thirion-Moreau and Moeness G. Amin. Chapter 11 - quadratic time-frequency domain methods. In P. Comon and C. Jutten, editors, Handbook of Blind Source Separation, pages 421 – 466. Academic Press, Oxford, 2010.