Doubly Nonstationary Blind Source Separation

Adrien Meynard

Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

Aix*Marseille université

Context:

- Blind source separation problem
- Nonstationary sources
- ► Time varying mixing matrix

Goal:

- ightharpoonup Estimate sources from the observations of their linear mixture ightharpoonup BSS
- ➤ Estimate deformation functions (time warping) which characterize the nonstationarity of the sources
- ► Estimate spectra of the underlying stationary sources

the sources Stationary sources

I. Model

A CLASS OF NONSTATIONARY SIGNALS

ightharpoonup x is a realization of a stationary random process X with power spectrum S_X . Acting on x with a time warping operator yields a nonstationary signal y given by:

$$y(t) = \sqrt{\gamma'(t)} x(\gamma(t))$$
.

➤ Wavelet transform:

$$\mathcal{W}_{\scriptscriptstyle X}(s, au) = \int_{\mathbb{R}} x(t) q^{-rac{s}{2}} \overline{\psi} \left(rac{t- au}{q^s}
ight) dt \quad ext{with} \quad q>1 \; .$$

 \Rightarrow The wavelet transforms of the nonstationary signal y and the underlying stationary signal x are approximately related as follows:

$$\mathcal{W}_{y}(s,\tau) \approx \mathcal{W}_{x}(s + \log_{q}(\gamma'(\tau)), \gamma(\tau))$$
.

It can be shown [1] that the approximation error is zero-mean and its variance is controlled by the decay properties of the wavelet ψ , and the variations of γ .

▶ JEFAS [2] is an algorithm which relies on the approximation equation for the joint estimation of the time warping function γ' and the spectrum S_x .

Doubly nonstationary instantaneous mixture

- ► Mixture model:
 - Sources $\mathbf{y}(t) \in \mathbb{R}^N$: nonstationary signals (time warping model).
 - ▶ Observations $\mathbf{z}(t) \in \mathbb{R}^N$: instantaneous linear mixtures of the sources.

$$z(t) = A(t)y(t)$$
.

- ▶ **Goal:** determine jointly the mixing matrix $\mathbf{A}(t)$, the time warping functions $\gamma_i(t)$, and the spectra S_{X_i} of the stationary sources for $i \in \{1, ..., N\}$ from the observations $\mathbf{z}(t)$.
- ► Approximation equation:
 - Assumption: the mixing matrix coefficients are slowly varying.
 - At fixed time τ : approximate linear relation between the wavelet transforms of the sources and the observations:

$$\mathbf{w}_{\mathbf{z},\tau} pprox \mathbf{A}(\tau) \mathbf{w}_{\mathbf{y},\tau}$$
 .

where $\mathbf{w}_{\mathbf{z},\tau} = (\mathbf{w}_{\mathbf{z}_1,\tau}^T \cdots \mathbf{w}_{\mathbf{z}_N,\tau}^T)^T$ with $\mathbf{w}_{\mathbf{z}_i,\tau} = \mathcal{W}_{\mathbf{z}_i}(\mathbf{s},\tau)$. The same notation is used for the wavelet transform of the sources $\mathbf{w}_{\mathbf{y},\tau}$.

II. ESTIMATION PROCEDURE AND ALGORITHM

For each au, the parameters to estimate are:

- ▶ The unmixing matrix: $\mathbf{B}_{\tau} = \mathbf{A}(\tau)^{-1}$
- ▶ The time warping parameters: $\theta_{\tau} = (\theta_{1,\tau} \cdots \theta_{N,\tau})^T$ where $\theta_{i,\tau} = \log_q(\gamma_i'(\tau))$

Probabilistic setting

▶ Assume the stationary sources X_i are Gaussian. Then, we derive the law of the wavelet transforms of the sources $\mathbf{w}_{\mathbf{y},\tau}$ from the approximation equations. And, one can write the approximated likelihood on $\mathbf{w}_{z,\tau}$ given by

$$\ell_{\tau}(\mathbf{B}_{\tau}, \boldsymbol{\theta}_{\tau}) = \log(p_{\mathbf{w}_{z,\tau}|(\mathbf{B}_{\tau}, \boldsymbol{\theta}_{\tau})}(\mathbf{w}_{\mathbf{z},\tau}; \mathbf{B}_{\tau}, \boldsymbol{\theta}_{\tau}))$$

ightharpoonup Besides, a regularity prior is given to ${f B}_ au$ in order to take into account the smoothness assumption on the mixing matrix.

t y Estimation algorithm: JEFAS-BSS

- ightharpoonup Initialization: Evaluate $\tilde{\mathbf{B}}_{\tau}^{(0)} \Rightarrow$ Estimate the sources via $\tilde{\mathbf{y}}^{(0)}(au) = \tilde{\mathbf{B}}_{\tau}^{(0)}\mathbf{z}(au)$.
- ➤ The following two steps are computed alternatively until convergence:
- 1. For each source, estimate parameters $\tilde{\theta}_{i,\tau}^{(k)}$, $\forall \tau$ and spectrum $\tilde{S}_{X_i}^{(k)}$ applying JEFAS to $\tilde{y}_i^{(k-1)}$.
- 2. For each τ , solve the MAP problem replacing θ_{τ} with its current estimation:

$$\tilde{\mathbf{B}}_{\tau}^{(k)} = \arg\max_{\mathbf{B}_{\tau}} \ \ell_{\tau}(\mathbf{B}_{\tau}, \tilde{\boldsymbol{\theta}}_{\tau}^{(k)}) \ \text{ s.t. } \|\mathbf{B}_{\tau} - \tilde{\mathbf{B}}_{\tau-\Delta_{\tau}}^{(k)}\|_{\infty} \leq \epsilon_{B}\Delta_{\tau}.$$

 \Rightarrow Estimate the sources via $\tilde{\mathbf{y}}^{(k)}(\tau) = \tilde{\mathbf{B}}_{\tau}^{(k)}\mathbf{z}(\tau)$

III. RESULTS

The sharp wavelet ψ_\sharp (with infinitely many vanishing moments) is used, supported in the positive Fourier domain and defined by

$$\hat{\psi}_\sharp(\omega) = \epsilon^{rac{\delta(\omega,\omega_0)}{\delta(\omega_1,\omega_0)}}\,,\,\,\,\omega>0\,\, ext{where}\,\,\delta(a,b) = rac{1}{2}\left(rac{a}{b}+rac{b}{a}
ight)-1\,\,.$$

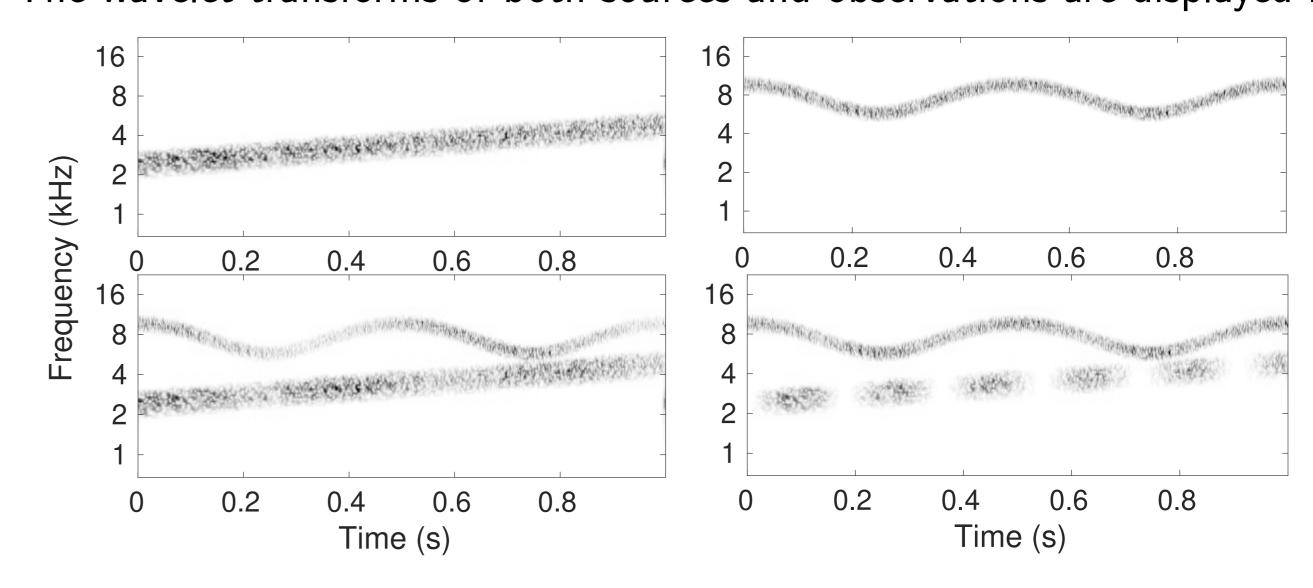
Here ω_0 is the mode of $\hat{\psi}$, ω_1 is chosen so that $\hat{\psi}_\sharp(\omega_1)=\epsilon$.

Synthetic example

- N=2
- ▶ Both nonstationary sources (time warping model) are Gaussian. Their underlying power spectra are two non-overlapping Hann windows.
- ▶ The time-varying mixing matrix coefficients are sinusoidally varying over time:

$$\mathbf{A}(t) = \begin{pmatrix} 1 + 0.3\cos(5\pi\frac{t}{T}) & 0.75 + 0.4\cos(3\pi\frac{t}{T}) \\ -0.5 + 0.5\cos(11\pi\frac{t}{T}) & 1 + 0.1\cos(8\pi\frac{t}{T}) \end{pmatrix} .$$

 \Rightarrow The wavelet transforms of both sources and observations are displayed below.



➤ JEFAS-BSS converges in 8 iterations. The estimated sources are displayed below, together with the corresponding estimated time warping functions and spectra.



➤ We compare the performances of JEFAS-BSS with reference BSS algorithms adapted to stationary sources (SOBI [3]) or constant mixing matrix (QTF-BSS [4]).

Algorithm	SIR (dB)		Amari index (dB)	
	Mean	SD	Mean	SD
SOBI	24.12	0.34	-7.13	0.01
p-SOBI	5.27	2.91	-9.38	0.03
QTF-BSS			-7.15	0.02
JEFAS-BSS	35.61	2.61	-25.80	0.39

Table: Comparison of the Signal to Interference Ratio and the averaged Amari index for four BSS algorithms.

REFERENCES

- [1] Harold Omer and Bruno Torrésani.

 Time-frequency and time-scale analysis of deformed stationary processes, with application to non-stationary sound modeling.

 Applied and Computational Harmonic Analysis, 43(1):1 22, 2017.
- [2] Adrien Meynard and Bruno Torrésani.
 Spectral Analysis for Nonstationary Audio.

 IEEE/ACM Transactions on Audio, Speech and Language Processing, 26(12):2371 2380, December 2018.
- [3] Adel Belouchrani, Karim Abed-Meraim, Jean-François Cardoso, and Eric Moulines.

 A blind source separation technique using second order statistics.
 - A blind source separation technique using second-order statistics. *IEEE Transactions on Signal Processing*, 45(2):434–444, Feb 1997.
- [4] Nadège Thirion-Moreau and Moeness G. Amin. Chapter 11 - quadratic time-frequency domain methods. In P. Comon and C. Jutten, editors, *Handbook of Blind Source Separation*, pages 421 – 466. Academic Press, Oxford, 2010.