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Objective

Goal

Represent the evolution of the instantaneous frequency of signals
with fast varying instantaneous frequency

Steps

Describe the type of signals we want to analyze

Sort the desired properties of the ideal time-frequency
representation ⇒ Construction of a functional to minimize

Implement the minimization algorithm ⇒ Tycoon algorithm

Compare the numerical results with other transforms
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Motivations

Extracting proper features from the collected dataset is the �rst
step toward data analysis.

Signal model

f (t) =
K∑

k=1

Ak(t) cos(2πφk(t))

where Ak(t) > 0 and φ′k(t) > 0

Ak(t)and φ′k(t) are not constants. Thus, the momentary
behavior of the oscillation cannot be captured by the Fourier
transform.

We use Time-Frequency representations to analyze this type of
signals.

4 / 22



Introduction Model and optimization approach Numerical algorithm Numerical results Discussion and future work

Limits

Limits

Main limits of time-frequency analysis :

Heisenberg uncertainty principle,

Interference between modes.

Di�erent methods have been developed to alleviate the shortage of
these analyses (EMD, Reassignment, Synchrosqueezing
transform...). But there is still a lack : they are not e�cient
(particularly Synchrosqueezing) to represent signals with fast
varying frequency. We constructed a time frequency representation
which has the property to represent this type of signals.
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Model

Generalized intrinsic mode type function

Generalized intrinsic mode type function Qc1,c2,c3
ε

Fix constants 0 ≤ ε� 1,c2 > c1 > ε and c2 > c3 > ε. Consider
the functional set Qc1,c2,c3

ε , which consists of functions in
C 1(R) ∩ L∞(R) with the following format :

g(t) = A(t) cos(2πφ(t))

which satisfy : A ∈ C 1(R) ∩ L∞(R), φ ∈ C 3(R), where ∀t ∈ R :

1 c1 ≤ A(t) ≤ c2,
2 c1 ≤ φ′(t) ≤ c2,

3 |φ′′(t)| ≤ c3,

and the growth condition, ∀t ∈ R :

1 |A′(t)| ≤ εφ′(t), 2 |φ′′′(t)| ≤ εφ′(t).
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Model

Adaptive harmonic Model

Adaptive harmonic model Qc1,c2,c3
ε,d

g(t) =
K∑

k=1

Ak(t) cos(2πφk(t))

where Ak(t) cos(2πφk(t)) ∈ Qc1,c2,c3
ε and φ′k+1

(t)− φ′k(t) > d

How to get the time-frequency representation of this type of
functions ?
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Optimization approach

We would like to construct a convex functional. Therefore, we need
to �nd two terms :

The data �delity term,

The regularization term.

The data �delity term correspond to the relation between the
measured signal and the constructed transform. This is the
reconstruction formula.
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Optimization approach

Data �delity term

To �nd it, let consider the ideal time-frequency
representation(iTFR), denoted as Rf (t, ω).
We would expect to have Rf (t, ω)., satisfying

Rf (t, ω) =
K∑

k=1

Ak(t)e i2πφk (t)δφ′k (t)(ω).

Data �delity term

We can easily �nd that

f (t) = <
∫

Rf (t, ω)dω
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Optimization approach

Regularization term

Di�erentiation properties

For signal with slow varying frequency, i.e
|φ′′(t)| ≤ ε|φ′(t)|, ∀t ∈ R, one can prove that :

∂tRf (t, ω) ≈ i2πωRf (t, ω).

When f ∈ Qc1,c2,c3
ε :

∂tRf (t, ω) ≈ i2πωRf (t, ω)− φ′′(t)∂ωRf (t, ω).

Regularization term∫
|∂tF (t, ω)− i2πωF (t, ω) + α(t)∂ωF (t, ω)|2dtdω

where α(t) is used to capture the chirp factor associated with the
"fast varying instantaneous frequency".
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Functional

Functional to minimize

H(F , α) =

∫
R

∣∣∣∣< ∫
R
F (t, ω)dω − f (t)

∣∣∣∣2 dt
+ µ

∫∫
R
|∂tF (t, ω)− i2πωF (t, ω) + α(t)∂ωF (t, ω)|2 dtdω

+ λ‖F‖L1 + γ‖α‖2L2

First, for a numerical optimization we need to discretize it.

Numerical discretization

Due to the data collection procedure, we get
Fnm = F (tm, ωn), αm = α(tm)

We discretize H(F , α) directly by the rectangle method.
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Strategy

Alternate optimization{
Fk+1 = argmin

F

H(F ,αk)

αk+1 = argmin
α
H(Fk+1,α)

Over α, we can reach the global minimizer of
α 7→ H(Fk+1,α),

To �nd a minimizer of F 7→ H(F ,αk), the use of an iterative
algorithm is required.
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Minimization of Hα = H(·,α)

Hα can be decomposed as

Hα(F ) = Gα(F ) + Ψα(F )

where Gα is a convex and Lipschitz di�erentiable function, and Ψα

a convex but non-smooth function.

FISTA

Under these conditions, the Fast Iterative Shrinkage/Thresholding
Algorithm (FISTA) can then be employed. FISTA has the great
advantage to reach the optimal rate of convergence ; that is, if F̌ is

the convergence point, Hα(Fk)−Hα(F̌ ) = O
(

1

k2

)
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FISTA algorithm

Algorithm 1 FISTA algorithm for Hα : F = FISTA(F0,α,ε).

The initial values are F0 ∈ C(N+1)×(M+1), z0 = F0.
while stopping criterion is false do

• Gradient step : Fk+1/2 ← zk −
1

L
∇Gα|zk ;

• Proximal step : Fk+1/2 ← Fk+1/2

(
1− λ/L

|Fk+1/2|

)+

;

• Monotonic step : Control that H(Fk+1/2, α) < H(Fk , α)

• Relaxation step : zk+1 ← Fk+1 +
k

k + 2
(Fk+1 − Fk) +

k + 1

k + 2
(Fk+1/2 − Fk) ;

k = k + 1 ;
end while

Output F .
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Figure � Results
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Some numerical results

Figure � Chirp factor
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Some results

Figure � Comparison
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Conclusion

While with the help of FISTA the optimization process can be
carried out, it is still not numerically e�cient enough for
practical usage.

When there are more than one oscillatory component, we
could improve the result.

How to choose an optimal set of parameters µ,λ and γ ?

Theoretically studying the noise in�uence on the algorithm is
important.
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