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Motivations

In the context of audio signal processing, the analyzed sounds are
generally non stationary.

Example:

Classical spectral estimation cannot be applied to this type of signals
because the spectrum is only defined for stationary signals.
The questions are:

How to model such signals?

Can we define a spectrum and can we estimate it?
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Stationarity

Stationarity

A stochastic process X is said to be stationary if its statistical properties
are translation invariant.

A less general context concerns second order stationary processes i.e

E {X (t)} = E {X (0)} = m ,

E {X (t)X ∗(τ)} = E {X (t − τ)X ∗(0)} = kX (t − τ) .

⇒ The power spectrum of a second order stationary process X is given
by the Fourier transform of the autocorrelation kx (Wiener-Khinchin
theorem).
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Goal

We consider classes of non-stationary processes that can be written as

Y (t) = T X (t) ,

where X is a stationary process and T is a stationarity breaking operator.

Goal

Spectral estimation can be viewed as the joint estimation of T and the
spectrum of the underlying stationary process X .
⇒ From a single realization y of Y , we estimate both T and SX .

Remark: This problem is far too general. Which types of operators T can
we consider?
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Deformation model

Considered deformations1, 2

Frequency modulation

Mα : Mαx(t) = e2iπα(t)x(t) ,

where α ∈ C 2 is a smooth function.

Time warping

Dγ : Dγx(t) =
√
γ′(t)x(γ(t)) ,

where γ is a smooth, strictly increasing function, assumed to fulfill
the control conditions

∀t, 0 < cγ < γ′(t) < Cγ <∞, for some constant cγ ,Cγ .

Any combination of the two above deformations.
1M. Clerc and S. Mallat, “Estimating deformations of stationary processes,” Ann.

Statist., vol. 31, no. 6, pp. 1772–1821, 12 2003.
2H. Omer, B. Torrésani, Time-frequency and time-scale analysis of deformed

stationary processes, with application to non-stationary sound modeling, Applied and
Computational Harmonic Analysis, Vol. 43, no. 1, July 2017, pp. 1-22

7 / 26



Background and motivations Models and approximations Estimation procedure and algorithm Conclusion

Deformation model

Observation Model

Model

Assume X is a zero mean, circular complex Gaussian stationary
generalized random process. The observation is of the form

Y = MαDγX + W ,

where W is a white noise generalized random process.
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Approximation results

Idea: Construct a representation of Y where the relation between the
transform of Y and the transform of X is characterized by simple
geometric transformation (translation, ...) depending on α and γ.

Let us first consider translation, modulation and rescaling operators:

Tτx(t) = x(t − τ) , Mνx(t) = e2iνtx(t) , Dsx(t) = q−s/2x
(
q−st

)
Adapted transform

Vx(ν, s, τ) = 〈x ,TτMνDsψ〉 ,

where ψ is a fixed analyzing waveform (concentrated around the origin).

Remarks:

If ν = 0, Wx(s, τ) = Vx(0, s, τ) is the wavelet transform of x .

If s = 0, Gx(ν, τ) = Vx(ν, 0, τ) is the short time Fourier transform of
x .
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Approximation results

Example

Here, γ′ is sinusoidal. Assuming that α(t) = η(t − γ(t)), the adapted
transform is the modified wavelet transform Vx(η, · , · ).

0 0.5 1 1.5 2 2.5

Time (s)

0 0.5 1 1.5 2 2.5

Time (s)

11525

6013 

3256 

1878 

1189 

845  

672  
F

re
q
u
e
n
c
y
 (

H
z
)

log
2
( '(t))

Figure: Scalograms of stationary and deformed signals.

⇒ The deformation generates a displacement of the coefficients in the
adapted transform domain. 10 / 26
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Approximation results

Approximation theorem

VY (ν, s, τ) ≈ e2iπα(τ)VX
(
ν − α′(τ)

γ′(τ)
, s + logq(γ′(τ)), γ(τ)

)
The error ε = VY − ṼY is a zero mean Gaussian random field with
variance E

{
|ε(ν, s, τ)|2

}
that depends on the smoothness of α′ and γ′,

and on the waveform decay rate.

⇒ How can we estimate these displacements in the time-scale-frequency
space?
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Estimation procedure

Estimation strategy

The joint estimation of the deformation operator and the spectrum of the
underlying stationary signal is separated into two steps:

Estimation of the deformation assuming that the spectrum is known,

Estimation of the spectrum assuming that the deformation is known.

⇒ These two steps are computed alternatively until convergence of the
estimators.

13 / 26



Background and motivations Models and approximations Estimation procedure and algorithm Conclusion

Estimation procedure

Step 1: Deformation estimation

Assume that the spectrum of the underlying stationary signal SZ is
known.
At fixed time τ , considering that the parameters Θ to estimate are

Θ = (θ1, θ2) := (α′(τ), logq(γ′(τ))).

Denote by Vy the restriction of Vy (·, ·, τ) to a finite sampling subset of
the frequency-scale space. Vy is a zero mean circular, Gaussian random
vector. This yields to the following log-likelihood

L (Θ) = − ln |detC(Θ)| − C(Θ)−1Vy · Vy ,

where

(C(Θ))ij = q(si+sj )/2

∫ ∞
0

SZ (q−θ2u)ψ̂ [qsi (u + θ1 − νi )] ψ̂ [qsj (u + θ1 − νj)] du.
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Estimation procedure

Step 2: Spectrum estimation

Assume that the deformation operators α and γ are known.

The underlying stationary signal z is derived from the application of
the inverse deformation to y

z := Dγ
−1Mα

−1y = x + D−1
γ M−1

α w .

A spectral estimation ŜZ is performed on z using standard tools of
spectral estimation on stationary signals (for example: Welch
estimator).
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Estimation procedure

Joint estimation scheme

Joint spectrum and deformation estimation algorithm

Initialization: provide an initial guess Ŝ
(0)
Z for the spectrum.

while stopping criterion is false do

• As Ŝ
(k−1)
Z is known, the deformation function estimators α̂(k) and

γ̂(k) are obtained by computing the approximated maximum
likelihood estimator.
• Construct a “stationarized” signal ẑ (k) from y using α̂(k) and γ̂(k),
and estimate the corresponding power spectrum.
• k:= k+1

end while
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Estimation procedure

Cramér-Rao lower bound

The maximum likelihood estimator being asymptotically unbiased and
consistent, the Cramér-Rao lower bound provides relevant information
regarding the achievable precision of the estimator.

Cramér-Rao lower bound and Slepian-Bangs formula

For any unbiased estimator θ̂ of a component θ of the multivariate
parameter Θ,

E
{

(θ̂ − θ)2
}
≥ CRLB(θ).

When the observation is zero mean complex Gaussian

CRLB(θ) =
1

Trace

{(
C(Θ)−1

∂C(Θ)

∂θ

)2
} .
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Numerical examples

Toy example
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Figure: Joint time warping/spectrum estimation on a synthetic signal. Left:
time warping function estimate (full, blue), ground truth (full, red) and
Cramér-Rao bound (dotted, green); Right: spectrum of the underlying
stationary signal.
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Numerical examples

Racing car engine
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Figure: Joint time warping/spectrum estimation on an accelerating car engine:
scalograms of the original signal and the estimated underlying stationary signal.
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Numerical examples

Racing car engine
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Figure: Estimation of the power spectra of the input signal (left) and the
processed signals (right).
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Numerical examples

Singer
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Figure: Joint time warping/spectrum estimation on a female voice singing:
scalograms of the original signal and the estimated underlying stationary signal.

22 / 26





Background and motivations Models and approximations Estimation procedure and algorithm Conclusion

Numerical examples

Singer
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Figure: Estimation of the power spectra of the input signal (left) and the
processed signals (right).
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Summary

We consider classes of non-stationary signals that are modeled as
stationary signals deformed by linear operators (time warping and
frequency modulation).

The spectral estimation for non-stationary signal classes amounts to
estimate the deformation operator together with the spectrum of the
underlying stationary signal.

An alternate algorithm is implemented.

The formulation of the maximum likelihood problem as a continuous
parameter estimation problem allows to get information about the
precision of the estimator (Cramér-Rao bound).
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Applications

Analysis of non stationary signals in order to extract spectral
properties.

Synthesis of new signals applying any deformation to “stationarized”
signals:

Perspectives

The Gaussian assumption on the underlying stationary signal is not
always relevant. ⇒ A new model adapted to time sparse signals
must be able to synthesize such signals.

Estimating other types of deformations like amplitude modulations.

Example:
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THE END
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Approximation error

If |ψ(t)| ≤ 1/(1 + |t|β) for some β > 2, and that for all u, v ∈ R+,

I (u, v) :=

√〈
SX , f

(β)
u,v

〉
<∞ , with f (β)

u,v (ξ)=(uξ+v)2 β−1
β+2 .

Then

E
{
|ε(s,ν,τ)|2

}
≤q3s

(
K1‖γ′′‖∞+K2q

s β−4
β+2 I (‖γ′′‖∞, ‖α′′‖∞)

)2

where

K1 =
βσX

2(β − 2)
√
cγ

, K2 =
(π

2

) β−1
β+2 √

Cγ
4(β + 2)

3(β − 1)
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https://www.latp.univ-mrs.fr/~omer/SounDef/
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