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Biomedical signals: Cardiac signals

m Blood volume changes <+ Photoplethysmogram (PPG)
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m Arterial blood pressure (ABP)
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Biomedical signals: Respiratory signals

m Thoracic movement recorded by a piezoelectric sensor (THO)
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Time-frequency analysis

Goal: Visualize the evolution of the instantaneous frequencies forming
the signal.

= Time-frequency representations.

Short-Time Fourier Transform (STFT);

Synchrosqueezing Transform (SST);

Reassignment (RS);
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Boundary effects

m Time-frequency analysis is based on windowing techniques.
m Time-frequency representations are thus sensitive to boundaries.

m The accuracy of these representation is deteriorated near boundaries.

—>Boundary effects
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Real-time time-frequency analysis
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Goal: Being able to display real-time boundary-free time-frequency

representations.
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A boundary-effect reduction algorithm
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Strategy

Two-step strategy:

Forecast a sufficiently long extension of the signal to push signal's
boundaries;

Perform a time-frequency analysis on the extended signal, until the
current time.

= How can we forecast the biomedical signals that interest us?
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Extension step

Idea: Take advantage of the shape of the signals we consider to establish
a fast and accurate forecasting method.

Adaptive Harmonic Model

m f; is the sampling frequency;

m x € RV is the observed signal;
m w € R" is a Gaussian white noise;

m z € R" is an oscillatory deterministic signal such that

J
z[n] = Z aj (;) cos <27r¢j <:)> ,
_]:1 S S
where a; (7’:) and gbj’- (%) describe how large and fast the signal

oscillates at time 7.
£

Then, we assume that
X=z+0ow.
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Extension step

To determine a prediction of the signal of length L, we estimate the
dynamical behavior of the oscillating signal from its previous values.

We extract a set {xy,...,xx} of K subsignals of length M > L from
X.

Establishing a dynamical model consists in determining the
relationship that binds x,1 to Xk, that is finding a function f so that

xk+1:f(xk), Vke{l,...,K—l}.
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Extension step

Here, we consider here a naive dynamical model, assuming that we have
Xer1 = Axe, Vked{l,...,K—-1},

where A € RM*M.

m Classical strategy in the study of dynamical systems: linearization of
a nonlinear system.

m Fast and simple estimation of the parameters characterizing the
dynamical model. Indeed:

A=YXT(XX")"1,
Least square estimator

where X = (xl xK,l) and Y = (X2 xK).

m The forecasting of x,, is obtained by recursively applying the linear
relation:

)N(K_;,_g = AAAXK = AZXK .

¢ times

— Fast forecasting strategy. Is it accurate?
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Theoretical forecasting error

In the case where x follows the AHM model, we asymptotically bound
the forecasting error € defined by

€[n] = X[n] — z[n] .

In particular, we focus on
The bias, such that

pln] = E{e[n]} ;

The variance, given by

yln, n'] = E{(e[n] — pln]) (e[n] — p[n'])} -
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Theoretical forecasting error

Theorem (Asymptotic behavior the the forecasting error)

B The first-order moment of the forecasting error at time n > N satisfies

(n)
(n) 2 1 81 (n) 1
<
|e[n]| a o +K< 5 ta >+0<K>

as K — oo, where ag"), agn), and agn) are positive quantities,

independent of K and o.
B /ts second-order moment satisfies:

(n.n')
() 2 1[a (na') | (mn') 2 1
Al < &0 +K< 2 e U)+O(K)

(n,n")

’ / 4
(n,n")  (n,n") cé"’" ) and c are positive

as K — oo, where ¢, , G ,
quantities, independent of K and o.

14 /24



Numerical Results
o

Numerical results
m Performance of the extension scheme
m Performance of the boundary effect reduction
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lllustration of the theoretical results on a simulated signal

m Evolution of the experimental forecasting variance as a function of
the noise variance for three different values the forecasting sample

index /.
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lllustration of the theoretical results on a simulated signal

m Evolution of the experimental forecasting variance in function of the
dataset size for three different values the forecasting sample index £.
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Applications to Real Physiological Signals

Respiratory signal

1 [—SigExt extension
- - Ground truth extension|
0 |—— Original signal

-1
1 —EDMD

- - Ground

extensi
0 |— Original signal

Signals

Signals

-1

1 /—GPR cxtension

% - - Ground truth extension
2 0|~ Original signal
@
B
© 0 - Original signal
31 /
80 82 84 86 8y P 92 94 %
Extension MSE Performance index D (mean £ SD)
method STFT SST RS ConceFT
SigExt 0.292 0.370 0.408 0.866 0.423
+4.438 +0.623 | +0.436 | +0.879 +0.344
Symmetric 0.044 1.162 1.173 1.022 1.144
+0.111 +0.893 | +0.886 | +0.281 +0.579
EDMD 0.026 0.359 0.422 0.828 0.449
+0.112 +0.266 | +0.282 | +0.248 +0.296
GPR 0.331 0.391 0.411 0.897 0.430
+4.858 +0.853 | +0.406 | +1.140 +0.364

18 /24



Numerical Results
0@00

Applications to Real Physiological Signals
PPG signal

—— SExt extension
2 |- - ~Ground truth extension|
Original signal

Signals
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Extension MSE Performance index D (mean £ SD)
method STFT SST ConceFT RS
SieExt 0.018 0.280 0.309 0.367 0.534

& +0.014 +0.107 | +0.112 +0.183 +0.160

Symmetric 0.037 1.168 1.209 1.310 0.983
4 +0.007 +0.390 | +0.340 +0.140 +0.304
EDMD 0.012 0.289 0.319 0.375 0.503

+0.005 +0.126 | +0.134 | =+0.163 +0.163
GPR 0.018 0.276 0.303 0.361 0.544
+0.013 +0.106 | +0.110 +0.165 +0.157
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Real-Time Implementation

m f;: sampling frequency

B trorecast: time to compute the forecasting of L oncoming samples

B tggr: time to compute one column of the synchrosqueezing
transform

m H: hop size (number of samples between each successive column of
the synchrosqueezing transform)

A general rule to determine the acceptable values of H for real-time
implementation of update the boundary-free TF representation is

t + L t: < H
forecast H SST fs .
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Applications to Real Physiological Signals

PPG signal : real-time implementation

In this example, taking H > 8 samples is sufficient to ensure the
feasibility of real-time implementation. It thus allows a maximum overlap
of 98.4% of the window length.
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Conclusion
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Conclusion

Conclusion

We propose an algorithm for the real-time reduction of boundary effects
in time-frequency representations. We have shown that:

m the dynamic model is theoretically sufficient to extend AHM signals.
m the low running time allows real-time implementation;
m the algorithm is robust to noise;

m it can be applied to many time-frequency representations.

m Add a preliminary step that detect signal activity, and disable the
forecasting step when necessary;

m accelerate the algorithm by optimizing the forecasting step;

m extend this strategy to more challenging biomedical signals, such as
electroencephalogram (EEG).
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Questions?
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