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Biomedical signals: Cardiac signals

Blood volume changes ↔ Photoplethysmogram (PPG)
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Electrical activity of the heart ↔ Electrocardiogram (ECG)
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Arterial blood pressure (ABP)
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Biomedical signals: Respiratory signals

Thoracic movement recorded by a piezoelectric sensor (THO)
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Time-frequency analysis

Goal: Visualize the evolution of the instantaneous frequencies forming
the signal.
⇒ Time-frequency representations.

Short-Time Fourier Transform (STFT);
Synchrosqueezing Transform (SST);
Reassignment (RS);
. . .

STFT
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Boundary effects

Time-frequency analysis is based on windowing techniques.
Time-frequency representations are thus sensitive to boundaries.
The accuracy of these representation is deteriorated near boundaries.

=⇒Boundary effects
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Real-time time-frequency analysis

SST
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Goal: Being able to display real-time boundary-free time-frequency
representations.

7 / 24



Introduction Algorithm Numerical Results Conclusion

1 Introduction: boundary effects

2 A boundary-effect reduction algorithm

3 Numerical results

4 Conclusion

8 / 24



Introduction Algorithm Numerical Results Conclusion

Strategy

Two-step strategy:

1 Forecast a sufficiently long extension of the signal to push signal’s
boundaries;

2 Perform a time-frequency analysis on the extended signal, until the
current time.

⇒ How can we forecast the biomedical signals that interest us?
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Extension step

Idea: Take advantage of the shape of the signals we consider to establish
a fast and accurate forecasting method.

Adaptive Harmonic Model

fs is the sampling frequency;

x ∈ RN is the observed signal;

w ∈ RN is a Gaussian white noise;

z ∈ RN is an oscillatory deterministic signal such that

z[n] =
J∑

j=1

aj

(
n

fs

)
cos

(
2πφj

(
n

fs

))
,

where aj
(

n
fs

)
and φ′j

(
n
fs

)
describe how large and fast the signal

oscillates at time n
fs

.

Then, we assume that
x = z + σw .
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Extension step

To determine a prediction of the signal of length L, we estimate the
dynamical behavior of the oscillating signal from its previous values.

1 We extract a set {x1, . . . , xK} of K subsignals of length M > L from
x.

2 Establishing a dynamical model consists in determining the
relationship that binds xk+1 to xk , that is finding a function f so that

xk+1 = f (xk) , ∀k ∈ {1, . . . ,K − 1} .
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Extension step

Here, we consider here a naive dynamical model, assuming that we have

xk+1 = Axk , ∀k ∈ {1, . . . ,K − 1} ,

where A ∈ RM×M .

Classical strategy in the study of dynamical systems: linearization of
a nonlinear system.

Fast and simple estimation of the parameters characterizing the
dynamical model. Indeed:

Ã = YXT (XXT )−1 .
Least square estimator

where X =
(
x1 · · · xK−1

)
and Y =

(
x2 · · · xK

)
.

The forecasting of xk+` is obtained by recursively applying the linear
relation:

x̃K+` = ÃÃ · · · Ã︸ ︷︷ ︸
` times

xK = Ã`xK .

=⇒ Fast forecasting strategy. Is it accurate?
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Theoretical forecasting error

In the case where x follows the AHM model, we asymptotically bound
the forecasting error ε defined by

ε[n] = x̃[n]− z[n] .

In particular, we focus on

1 The bias, such that

µ[n] = E{ε[n]} ;

2 The variance, given by

γ[n, n′] = E{(ε[n]− µ[n]) (ε[n′]− µ[n′])} .
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Theoretical forecasting error

Theorem (Asymptotic behavior the the forecasting error)

� The first-order moment of the forecasting error at time n ≥ N satisfies

|µ[n]| ≤ a
(n)
0 σ2 +

1

K

(
a
(n)
1

σ2
+ a

(n)
2

)
+ o

(
1

K

)

as K →∞, where a
(n)
0 , a

(n)
1 , and a

(n)
2 are positive quantities,

independent of K and σ.
� Its second-order moment satisfies:

|γ[n, n′]| ≤ c
(n,n′)
0 σ2 +

1

K

(
c
(n,n′)
1

σ2
+ c

(n,n′)
2 + c

(n,n′)
3 σ2

)
+ o

(
1

K

)

as K →∞, where c
(n,n′)
0 , c

(n,n′)
1 , c

(n,n′)
2 and c

(n,n′)
3 are positive

quantities, independent of K and σ.
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Illustration of the theoretical results on a simulated signal

Evolution of the experimental forecasting variance as a function of
the noise variance for three different values the forecasting sample
index `.
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Illustration of the theoretical results on a simulated signal

Evolution of the experimental forecasting variance in function of the
dataset size for three different values the forecasting sample index `.
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Applications to Real Physiological Signals
Respiratory signal

Extension
method

MSE
Performance index D (mean ± SD)

STFT SST RS ConceFT

SigExt
0.292 0.370 0.408 0.866 0.423
±4.438 ±0.623 ±0.436 ±0.879 ±0.344

Symmetric
0.044 1.162 1.173 1.022 1.144
±0.111 ±0.893 ±0.886 ±0.281 ±0.579

EDMD
0.026 0.359 0.422 0.828 0.449
±0.112 ±0.266 ±0.282 ±0.248 ±0.296

GPR
0.331 0.391 0.411 0.897 0.430
±4.858 ±0.853 ±0.406 ±1.140 ±0.364
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Applications to Real Physiological Signals
PPG signal
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Extension
method

MSE
Performance index D (mean ± SD)

STFT SST ConceFT RS

SigExt
0.018 0.280 0.309 0.367 0.534
±0.014 ±0.107 ±0.112 ±0.183 ±0.160

Symmetric
0.037 1.168 1.209 1.310 0.983
±0.007 ±0.390 ±0.340 ±0.140 ±0.304

EDMD
0.012 0.289 0.319 0.375 0.503
±0.005 ±0.126 ±0.134 ±0.163 ±0.163

GPR
0.018 0.276 0.303 0.361 0.544
±0.013 ±0.106 ±0.110 ±0.165 ±0.157
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Real-Time Implementation

fs: sampling frequency

tforecast: time to compute the forecasting of L oncoming samples

tSST: time to compute one column of the synchrosqueezing
transform

H: hop size (number of samples between each successive column of
the synchrosqueezing transform)

A general rule to determine the acceptable values of H for real-time
implementation of update the boundary-free TF representation is

tforecast +

⌈
L

H

⌉
tSST <

H

fs
.
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Applications to Real Physiological Signals
PPG signal : real-time implementation

In this example, taking H ≥ 8 samples is sufficient to ensure the
feasibility of real-time implementation. It thus allows a maximum overlap
of 98.4% of the window length.

SST
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Conclusion

Conclusion

We propose an algorithm for the real-time reduction of boundary effects
in time-frequency representations. We have shown that:

the dynamic model is theoretically sufficient to extend AHM signals.

the low running time allows real-time implementation;

the algorithm is robust to noise;

it can be applied to many time-frequency representations.

Perspectives

Add a preliminary step that detect signal activity, and disable the
forecasting step when necessary;

accelerate the algorithm by optimizing the forecasting step;

extend this strategy to more challenging biomedical signals, such as
electroencephalogram (EEG).
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Questions?
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