Algorithm 0000000 Numerical Results

Conclusion

Reduction of boundary effects in real-time time-frequency analysis

Adrien Meynard Joint work with Hau-Tieng Wu

January 15, 2021

	Algorithm	Numerical Results	Conclusion
Outline			

1 Introduction: boundary effects

2 A boundary-effect reduction algorithm

3 Numerical results

4 Conclusion

■ Blood volume changes ↔ Photoplethysmogram (PPG)

■ Electrical activity of the heart ↔ Electrocardiogram (ECG)

Arterial blood pressure (ABP)

Introduction	Algorithm		
00000	000000	0000000	000
Time freque	nev analysis		

l ime-frequency analysis

Goal: Visualize the evolution of the instantaneous frequencies forming the signal.

- \Rightarrow Time-frequency representations.
 - Short-Time Fourier Transform (STFT);
 - Synchrosqueezing Transform (SST);
 - Reassignment (RS);
 - . . .

Introduction	Algorithm		
00000	000000	000000	000
Time frequency	nalvoia		

Time-frequency analysis

Goal: Visualize the evolution of the instantaneous frequencies forming the signal.

- \Rightarrow Time-frequency representations.
 - Short-Time Fourier Transform (STFT);
 - Synchrosqueezing Transform (SST);
 - Reassignment (RS);
 - . . .

Introduction			
00000	000000	000000	000
Time frequences	n a lucata		

Time-frequency analysis

Goal: Visualize the evolution of the instantaneous frequencies forming the signal.

- \Rightarrow Time-frequency representations.
 - Short-Time Fourier Transform (STFT);
 - Synchrosqueezing Transform (SST);
 - Reassignment (RS);
 - . . .

Introduction	Algorithm	Numerical Results	Conclusion
00000	0000000	0000000	000
Τ:	u a lu al a		

Time-frequency analysis

Goal: Visualize the evolution of the instantaneous frequencies forming the signal.

\Rightarrow Time-frequency representations.

- Short-Time Fourier Transform (STFT);
- Synchrosqueezing Transform (SST);
- Reassignment (RS);
- ...

Introduction	Algorithm	Numerical Results	Conclusion
00000			
Boundary effects			

- Time-frequency analysis is based on windowing techniques.
- Time-frequency representations are thus sensitive to boundaries.
- The accuracy of these representation is deteriorated near boundaries.

\Rightarrow Boundary effects

 Introduction
 Algorithm
 Numerical Results
 Conclusion

 0000●
 0000000
 000
 000

Real-time time-frequency analysis

Goal: Being able to display real-time boundary-free time-frequency representations.

	Algorithm		
00000	000000	000000	000

1 Introduction: boundary effects

2 A boundary-effect reduction algorithm

3 Numerical results

4 Conclusion

	Algorithm	
	000000	
Strategy		

Two-step strategy:

- Forecast a sufficiently long extension of the signal to push signal's boundaries;
- **2** Perform a time-frequency analysis on the extended signal, until the current time.

 \Rightarrow How can we forecast the biomedical signals that interest us?

	Algorithm	Numerical Results	Conclusion
	000000		
Extension star			

Idea: Take advantage of the shape of the signals we consider to establish a **fast** and **accurate** forecasting method.

Adaptive Harmonic Model

- *f*_s is the sampling frequency;
- $\mathbf{x} \in \mathbb{R}^N$ is the observed signal;
- $\mathbf{w} \in \mathbb{R}^N$ is a Gaussian white noise;

z $\in \mathbb{R}^N$ is an oscillatory deterministic signal such that

$$\mathbf{z}[n] = \sum_{j=1}^{J} a_j\left(rac{n}{f_{\mathsf{s}}}
ight) \cos\left(2\pi\phi_j\left(rac{n}{f_{\mathsf{s}}}
ight)
ight) \,,$$

where $a_j\left(\frac{n}{f_s}\right)$ and $\phi'_j\left(\frac{n}{f_s}\right)$ describe how large and fast the signal oscillates at time $\frac{n}{f_s}$.

Then, we assume that

$$\mathbf{x} = \mathbf{z} + \sigma \mathbf{w}$$
.

	Algorithm	Numerical Results	Conclusion
	0000000		
Esternation star	_		
Extension step)		

To determine a prediction of the signal of length L, we estimate the dynamical behavior of the oscillating signal from its previous values.

- We extract a set $\{\mathbf{x}_1, \dots, \mathbf{x}_K\}$ of K subsignals of length M > L from \mathbf{x} .
- **2** Establishing a dynamical model consists in determining the relationship that binds \mathbf{x}_{k+1} to \mathbf{x}_k , that is finding a function f so that

$$\mathbf{x}_{k+1} = f(\mathbf{x}_k), \quad \forall k \in \{1, \dots, K-1\}.$$

	Algorithm	Numerical Results	Conclusion
	0000000		
	han		
Extension S	ted		

Here, we consider here a naive dynamical model, assuming that we have

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k, \quad \forall k \in \{1, \dots, K-1\} ,$$

where $\mathbf{A} \in \mathbb{R}^{M \times M}$.

- Classical strategy in the study of dynamical systems: linearization of a nonlinear system.
- Fast and simple estimation of the parameters characterizing the dynamical model. Indeed:

$$\tilde{\mathbf{A}} = \mathbf{Y} \mathbf{X}^T (\mathbf{X} \mathbf{X}^T)^{-1}$$
 .
Least square estimator

where $\mathbf{X} = (\mathbf{x}_1 \quad \cdots \quad \mathbf{x}_{K-1})$ and $\mathbf{Y} = (\mathbf{x}_2 \quad \cdots \quad \mathbf{x}_K)$.

• The forecasting of $\mathbf{x}_{k+\ell}$ is obtained by recursively applying the linear relation:

$$\tilde{x}_{\mathcal{K}+\ell} = \underbrace{\tilde{A}\tilde{A}\cdots\tilde{A}}_{\ell \text{ times}} x_{\mathcal{K}} = \tilde{A}^{\ell}x_{\mathcal{K}} \ .$$

 \implies Fast forecasting strategy. Is it accurate?

	Algorithm	Numerical Results	Conclusion
	0000000		
Theoretical forec	asting error		

In the case where **x** follows the AHM model, we asymptotically bound the forecasting error ϵ defined by

$$\epsilon[n] = \tilde{\mathbf{x}}[n] - \mathbf{z}[n]$$
.

In particular, we focus on

1 The bias, such that

 $\mu[n] = \mathbb{E}\{\epsilon[n]\}$;

2 The variance, given by

 $\gamma[n,n'] = \mathbb{E}\{(\epsilon[n] - \mu[n]) (\epsilon[n'] - \mu[n'])\}.$

Introduct	

Algorithm

Numerical Results

Conclusion 000

Theoretical forecasting error

Theorem (Asymptotic behavior the the forecasting error)

The first-order moment of the forecasting error at time $n \ge N$ satisfies

$$|\boldsymbol{\mu}[\boldsymbol{n}]| \leq \boldsymbol{a}_0^{(\boldsymbol{n})} \sigma^2 + \frac{1}{K} \left(\frac{\boldsymbol{a}_1^{(\boldsymbol{n})}}{\sigma^2} + \boldsymbol{a}_2^{(\boldsymbol{n})} \right) + o\left(\frac{1}{K} \right)$$

as $K \to \infty$, where $a_0^{(n)}$, $a_1^{(n)}$, and $a_2^{(n)}$ are positive quantities, independent of K and σ .

Its second-order moment satisfies:

$$|\gamma[n,n']| \le c_0^{(n,n')} \sigma^2 + \frac{1}{K} \left(\frac{c_1^{(n,n')}}{\sigma^2} + c_2^{(n,n')} + c_3^{(n,n')} \sigma^2 \right) + o\left(\frac{1}{K}\right)$$

as $K \to \infty$, where $c_0^{(n,n')}$, $c_1^{(n,n')}$, $c_2^{(n,n')}$ and $c_3^{(n,n')}$ are positive quantities, independent of K and σ .

		Numerical Results	
00000	000000	000000	000

1 Introduction: boundary effects

2 A boundary-effect reduction algorithm

3 Numerical results

- Performance of the extension scheme
- Performance of the boundary effect reduction

4 Conclusion

Evolution of the experimental forecasting variance as a function of the noise variance for three different values the forecasting sample index *l*.

Evolution of the experimental forecasting variance in function of the dataset size for three different values the forecasting sample index l.

Introduction 00000

Algorithm

Numerical Results

Conclusion 000

Applications to Real Physiological Signals Respiratory signal

Extension	MSE	Performance index D (mean \pm SD)			
method	IVISE	STFT	SST	RS	ConceFT
SigEvt	0.292	0.370	0.408	0.866	0.423
SIGEXL	±4.438	±0.623	±0.436	± 0.879	±0.344
Summetric	0.044	1.162	1.173	1.022	1.144
Symmetric	± 0.111	±0.893	±0.886	± 0.281	± 0.579
EDMD	0.026	0.359	0.422	0.828	0.449
EDIVID	± 0.112	±0.266	±0.282	± 0.248	±0.296
GPR	0.331	0.391	0.411	0.897	0.430
	± 4.858	±0.853	±0.406	± 1.140	±0.364

Introduction 00000

Algorithm

Numerical Results

Conclusion

Applications to Real Physiological Signals

Extension	tension MSE Performance index D (mean \pm SD)			\pm SD)	
method	IVISE	STFT	SST	ConceFT	RS
SigEvt	0.018	0.280	0.309	0.367	0.534
JIGEN	± 0.014	±0.107	±0.112	± 0.183	± 0.160
Summetric	0.037	1.168	1.209	1.310	0.983
Symmetric	± 0.007	±0.390	±0.340	± 0.140	±0.304
EDMD	0.012	0.289	0.319	0.375	0.503
	± 0.005	±0.126	±0.134	± 0.163	± 0.163
GPR	0.018	0.276	0.303	0.361	0.544
	± 0.013	±0.106	±0.110	± 0.165	± 0.157

	Algorithm	Numerical Results	
		0000000	
Real-Time	Implementation		

- - *f*_s: sampling frequency
 - t_{forecast} : time to compute the forecasting of L oncoming samples
 - *t*_{SST}: time to compute one column of the synchrosqueezing transform
 - H: hop size (number of samples between each successive column of the synchrosqueezing transform)

A general rule to determine the acceptable values of H for real-time implementation of update the boundary-free TF representation is

$$t_{\rm forecast} + \left\lceil \frac{L}{H} \right\rceil t_{\rm SST} < \frac{H}{f_{\rm s}} \ . \label{eq:tforecast}$$

 Introduction
 Algorithm
 Numerical Results
 Conclusit

 000000
 000000
 000
 000

 Applications to Real Physiological Signals
 PPG signal : real-time implementation

In this example, taking $H \ge 8$ samples is sufficient to ensure the feasibility of real-time implementation. It thus allows a maximum overlap of 98.4% of the window length.

	Algorithm	Numerical Results	Conclusion
00000	000000	000000	000

1 Introduction: boundary effects

- 2 A boundary-effect reduction algorithm
- 3 Numerical results

4 Conclusion

	Algorithm	Numerical Results	Conclusion
			000
Conclusion			

Conclusion

We propose an algorithm for the real-time reduction of boundary effects in time-frequency representations. We have shown that:

- the dynamic model is theoretically sufficient to extend AHM signals.
- the low running time allows real-time implementation;
- the algorithm is robust to noise;
- it can be applied to many time-frequency representations.

Perspectives

- Add a preliminary step that detect signal activity, and disable the forecasting step when necessary;
- accelerate the algorithm by optimizing the forecasting step;
- extend this strategy to more challenging biomedical signals, such as electroencephalogram (EEG).

	Algorithm		Conclusion
00000	000000	000000	000

Questions?